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Suppose prices are sticky. What should central banks do?

Textbook benchmark: Tractable-but-unrealistic Calvo friction

• Random and exogenous price stickiness

=⇒ Optimal policy: Inflation targeting Woodford 2003; Rubbo 2023

Criticism:

• Theoretical critique: Not microfounded

• Empirical critique: State-dependent pricing is a better fit examples

Nakamura et al 2018; Cavallo and Rigobon 2016; Alvarez et al 2018; Cavallo et al 2023
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Optimal policy under menu costs
Our contribution: More realistic (less tractable) menu costs

• Fixed cost of price adjustment
• Multi-sector model with sector-level productivity shocks

⇒ Motive for relative prices to change

=⇒ Optimal policy: countercyclical inflation after sectoral productivity shocks

• Trade off relative price distortions and direct costs

• Stylized analytical model

• Quantitative model

3 / 26



Optimal policy under menu costs
Our contribution: More realistic (less tractable) menu costs
• Fixed cost of price adjustment

• Multi-sector model with sector-level productivity shocks

⇒ Motive for relative prices to change

=⇒ Optimal policy: countercyclical inflation after sectoral productivity shocks

• Trade off relative price distortions and direct costs

• Stylized analytical model

• Quantitative model

3 / 26



Optimal policy under menu costs
Our contribution: More realistic (less tractable) menu costs
• Fixed cost of price adjustment
• Multi-sector model with sector-level productivity shocks

⇒ Motive for relative prices to change

=⇒ Optimal policy: countercyclical inflation after sectoral productivity shocks

• Trade off relative price distortions and direct costs

• Stylized analytical model

• Quantitative model

3 / 26



Optimal policy under menu costs
Our contribution: More realistic (less tractable) menu costs
• Fixed cost of price adjustment
• Multi-sector model with sector-level productivity shocks

⇒ Motive for relative prices to change

=⇒ Optimal policy: countercyclical inflation after sectoral productivity shocks

• Trade off relative price distortions and direct costs

• Stylized analytical model

• Quantitative model

3 / 26



Optimal policy under menu costs
Our contribution: More realistic (less tractable) menu costs
• Fixed cost of price adjustment
• Multi-sector model with sector-level productivity shocks

⇒ Motive for relative prices to change

=⇒ Optimal policy: countercyclical inflation after sectoral productivity shocks

• Trade off relative price distortions and direct costs

• Stylized analytical model

• Quantitative model

3 / 26



Optimal policy under menu costs
Our contribution: More realistic (less tractable) menu costs
• Fixed cost of price adjustment
• Multi-sector model with sector-level productivity shocks

⇒ Motive for relative prices to change

=⇒ Optimal policy: countercyclical inflation after sectoral productivity shocks

• Trade off relative price distortions and direct costs

• Stylized analytical model

• Quantitative model

3 / 26



Optimal policy under menu costs
Our contribution: More realistic (less tractable) menu costs
• Fixed cost of price adjustment
• Multi-sector model with sector-level productivity shocks

⇒ Motive for relative prices to change

=⇒ Optimal policy: countercyclical inflation after sectoral productivity shocks

• Trade off relative price distortions and direct costs

• Stylized analytical model

• Quantitative model
3 / 26



Related literature
• Optimal monetary policy with sectors / relative prices, Calvo

Aoki 2001, Woodford 2003, Benigno 2004, Wolman 2011, Rubbo 2023

• Menu costs assuming inflation targeting, solve for optimal inflation target
Wolman 2011, Nakov-Thomas 2014, Blanco 2021

• Menu costs + trending productivities (no direct costs)
Adam and Weber 2023

• Optimal policy with menu costs w/out sectors
Karadi, Nakov, Nuno, Pasten, and Thaler 2024

• Non-normative menu cost literature
∗ Theoretical Golosov-Lucas 2007; Caballero-Engel 2007; Nakamura-Steinsson 2009;

Alvarez-Lippi-Paciello 2011; Midrigan 2011; Gertler-Leahy 2008; Auclert et al 2023

∗ Empirical Nakamura et al 2018; Cavallo-Rigobon 2016; Alvarez et al 2018; Gautier-Le Bihan 2022
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Roadmap

1. Baseline model & optimal policy

2. Extensions

3. Comparison to Calvo model

4. Quantitative model

5. Conclusion and bigger picture



Model setup + household’s problem
General setup:
• Off-the shelf sectoral model with S sectors
• Each sector is a continuum of firms, bundled with CES technology
• Static model (& no linear approximation)

Household’s problem:

max
C,N,M

ln(C)− N + ln

(
M
P

)
s.t. PC + M = WN + D + M−1 − T

C = ∏S
i=1c1/S

i

Optimality conditions:

ci =
1
S

PC
pi

PC = M
W = M
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Intermediate firms: price setting with menu costs
Technology: firm j ∈ [0, 1] in sector i

yi(j) = Ai · ni(j)

• Sectoral productivity shocks: Ai
• Firms are identical within a sector

Demand: yi(j) = yi
(

pi(j)
pi

)−η

Marginal costs: MCi = W
Ai

Profit function:(
piyi −

W
Ai

yi(1 − τ)

)
− Wψχi

Menu cost: ψ extra units of labor
• χi: indicator for price change

=⇒ Direct cost of menu costs: excess disutility of labor
N = ∑i ni + ψ ∑i χi

• Other specifications do not affect result more
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Menu costs induce an inaction region

Objective function of sector i firm:
(

piyi − W
Ai

yi(1 − τ)

)
− Wψχi

Optimal reset price:
• if adjusting: price = nominal marginal cost

p∗i =
W
Ai

• if not adjusting: inherited price pold
i

Inaction region: don’t adjust iff p∗i = W
Ai

close to pold
i
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Optimal policy after a productivity shock Formal planner’s problem

• Start at steady state: all sectors have Ass
i = 1 ∀i, so pss

i = Wss ≡ 1

• Hit sector 1 with, say, a positive productivity shock: A1 > 1

Proposition 1: there exists a threshold level of productivity A s.t.:
• If shock is not too small, A1 ≥ A, optimal policy is nominal wage targeting:

W = Wss

• If shock is small, A1 < A, then optimal policy ensures no sector adjusts:

pi = pss
i ∀i
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Large-enough shocks

• Sector 1 productivity A1 ↑
=⇒ relative price p1/pk should fall

1. Under inflation targeting:
∗ =⇒ p1 ↓ and pk ↑

∗ =⇒ every sector pays menu cost

2. Under optimal policy:
∗ p1 ↓, but pk constant

∗ =⇒ only sector 1 pays menu cost
∗ How to ensure pk constant?

Stabilize nominal MC of unshocked firms

∗ Observe: in aggregate, Y ↑,P ↓

Recall: p∗i = MCi = W
Ai

pi

sector 1 sector 2 sector 3

Prices initially
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Small shocks: state dependent optimal policy math

Sectors k adjust Sectors k not adjust
Sector 1 adjusts

Sector 1 not adjust

Lemma 1: If adjusting, only shocked sectors should adjust

Wonly 1 adjusts > Wall adjust,Wonly k adjust

Lemma 2: ∃ A such that

Wonly 1 adjusts > Wnone adjust

iff A1 > A. Furthermore, A is increasing in ψ.
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How large are menu costs? welfare loss of inflation targeting

Summary: at least 0.5% of firm revenues, plausibly much more

1. Calibrated models.
(1) Measure frequency of price

adjustment
(2) Build structural model
(3) =⇒ calibrate menu costs to fit

Nakamura and Steinsson (2010):
• 0.5% of firm revenues

Blanco et al (2022):
• 2.4% of revenues

2. Direct measurement. For physical
adjustment costs,

Levy et al (1997, QJE): 5 grocery chains
• 0.7% revenue

Dutta et al (1999, JMCB): drugstores
• 0.6% revenue

Zbaracki et al (2003, Restat): mfg
• 1.2% revenue
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Extensions

• Generalized functional forms

• Multiple shocks / production networks

• Heterogenous costs more

• Sticky wages

12 / 26



Generalization: stabilize nominal MC of unshocked firms

Generalized model:
• Any (HOD1) aggregator:

C = F(c1, ..., cS)

• DRS production technology:
yi(j) = Aini(j)α, α ∈ (0, 1]

• Any preferences quasilinear in labor:
U
(
C, M

P
)
− N

Nominal MC:

MCi(j) =
[

α
W
Aα

i

(
yipη

i
)α−1

]θ

θ ≡ [1 − η(1 − α)]−1

Extended Proposition 1:
Stabilize nominal marginal costs of unshocked firms =⇒ Y ↑,P ↓
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Production networks
Baseline model:
• Production technology:

yi = Aini

Ii = ∏S
k=1 Ii(k)1/S

• Marginal cost:

MCi =
W
Ai

• Nominal MC of unshocked sectors
≡ W

Roundabout production network:
• Production technology:

yi = Ainβ
i I1−β

i
Ii = ∏S

k=1 Ii(k)1/S

• Marginal cost:

MCi = κ
WβP1−β

Ai

• Nominal MC of unshocked sectors
≡ WβP1−β
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Why not inflation targeting?
• Why then is optimal policy in multisector Calvo inflation targeting? Aoki, Rubbo

• Menu costs are nonconvex:

ψ · I{pi ̸= pss
i }

• With convex menu costs:

e.g. Rotemberg, ψ · (pi − pss
i )

2

• Calvo: convex cost of price dispersion

• Labor market clearing:

N = ∑ ni + ψ ∑ I{pi ̸= pss
i }

• Labor market clearing:

N = ∑ ni + ψ ∑ (pi − pss
i )

2

• Calvo welfare cost

∆ ≡
S
∑
i=1

∫ 1

0

[
pi(j)
pi

]−η

dj

Convex costs =⇒ smooth price changes across sectors
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Calvo diagram: shocking sector-1 productivity
pi

sector 1 sector 2 sector 3
Steady state

pi

sector 1 sector 2 sector 3
Flexible prices, after shock
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Quantitative model: setup

Does nominal wage target dominate inflation target in quantitative model?

Household: dynamic with more general functional forms

max
{Ct,Nt,Bt,Mt}∞

t=0

∞

∑
t=0

βt
[

C1−γ
t

1 − γ
− ω

N1+φ
t

1 + φ
+ ln

(
Mt
Pt

)]
s.t. PtCt + Bt + Mt ≤ RtBt−1 + WtNt + Mt−1 + Dt − Tt

Firms
∗ final and sectoral good producers: same as in static model
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Quantitative model: intermediate firms
Intermediate firms: idiosyncratic shocks, Calvo+ price setting, and DRS

max
pit(j),χit(j)

∞

∑
t=0

E

[
1

RtPt
{pit(j) yit(j)− Wtnit(j) (1 − τ)− χit(j)ψWt}

]
s.t. yit(j) = Aitait(j) nit(j)α

ψit(j) =
{

ψ w/ prob. 1 − ν

0 otherwise

productivity distribution is mixture between AR(1) and uniform (fat tail)

log (ait(j)) =
{

ρidio log (ait−1(j)) + εidio
it (j) with prob. 1 − ς

U [− log (a) , log (a)] with prob. ς
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Calibration
Two sets of parameters to calibrate:
(1) standard or drawn from literature and

(2) calibrated by SMM targeting

Parameter (monthly frequency) Value Target
β Discount factor 0.99835 2% annual interest rate
ω Disutility of labor 1 standard
φ Inverse Frisch elasticity 0 Golosov and Lucas (2007)
γ Inverse EIS 2 standard
S Number of sectors 6 Nakamura and Steinsson (2010)
η Elasticity of subst. between sectors 5 standard value
α Returns to scale 0.6 standard value
τ Labor subsidy 0.2 1/η

σidio Standard deviation of idio. shocks 0.044 menu cost expenditure / revenue 1%(1.1%)
ρidio Persistence of idio. shocks 0.995 share of price changers 8.7% (8.3%)

ψ Menu cost 0.1 median absolute price change 8.5% (8.7%)
ν Calvo parameter 0.075 Q1 absolute price change 4.5% (4.2%)
ς Fat tail parameter 0.0016 Q3 absolute price change 20.4% (14.8%)

kurtosis of price changes 3.609 (2.755)
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Exercise: perfect foresight sectoral shock
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Policy comparison: menu costs and welfare
Real menu cost expenditure
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Policy comparison: consumption equivalence

• Compare to welfare with flex. price

• Extra C needed to match welfare
under flexible prices

∑
t

βt U ((1 + λ)Ct, Nt)

= ∑
t

βt U
(

Cflex
t , Nflex

t
)

• λW = 0.002% λP = 0.025%
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=⇒ welfare loss of sticky prices –80.6%
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Decomposing welfare

Welfare response to A1 shock
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1. Direct costs: ψχt, disutility
of labor from menu costs

2. Efficiency costs: welfare
loss from incorrect relative prices

3. Improvement from both
channels
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Welfare over the business cycle

• Shock sector productivities according to

log(At) = ρA log(At−1) + εA

• εA = 0.95 σA ∼ N (0, 0.0161) Garin, Pries, and Sims (2018)

• Consumption equivalence results:
∗ λP = 0.01% versus λW = 0.003%

⇒ Nominal wage targeting dominates inflation targeting in quantitative model
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Conclusion
Inflation should be countercyclical after sectoral shocks

Rationale:
• Inflation targeting forces firms to adjust unnecessarily, which is costly
• Nominal wage targeting does not and still achieves “correct” relative prices

This aligns with the implications of other recent work:
• Calvo sticky wages
• Incomplete markets/financial frictions: Sheedy (2014), Werning (2014)
• Information frictions: Angeletos and La’O (2020)
• Sticky prices [new]: Caratelli and Halperin (2024)
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Thank you!



Formally: Social planner’s problem back

max
X∈{A,B,C,D}

UX

UA =

{
max
M ln[M]− M [S − 1 + 1/γ]

s.t. min(γλ1,λ2) ≤ M ≤ max(γλ1,λ2)

}

UB =

{
ln

[
1
Sγ1/S

]
− 1 − ψ

}
UC =

{ max
M ln

[(γ
S
) 1

S · M S−1
S
]
−
[
(S − 1)M + 1

S
]
− 1

S ψ

s.t. λ1 < M < min(γλ1,λ2)

}

UD =

{ max
M ln

[
S 1−S

S M 1
S
]
−
[

S−1
S + M

γ

]
− S−1

S ψ

s.t. max(γλ1,λ2) < M < γλ2

}

where λ1 =
1
S
(

1 −
√

ψ
)
, λ2 =

1
S
(

1 +
√

ψ
)
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Adjustment externalities back

Example: Social planner’s constrained problem for “neither adjust”

max
M

U (C(M),N(M)) (1)

s.t. Dadjust
1 < Dno adjust

1 (2)
Dadjust

k < Dno adjust
k (3)

=⇒ M∗
unconstrained

Social planner’s unconstrained problem: maximize (1), without constraints
=⇒ M∗

constrained

Adjustment externality: M∗
unconstrained ̸= M∗

constrained
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Alternative menu cost formulations back

Labor costs: Welfare mechanism is higher labor

profitsi − Wψ · χi

=⇒ N = ∑ ni + ψ ∑ χi

Real resource cost: Welfare mechanism is lower consumption

profitsi · (1 − ψ · χi)

=⇒ C = Y
(

1 − ψ ∑
i

χi

)
Direct utility cost: Welfare mechanism is direct

utility − ψ · ∑ χi
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Heterogeneity: “least-cost avoider principle” back

Proposition 5: Suppose sector i has mass Si and menu cost ψi. Suppose further

S1ψ1 < ∑
k>1

Skψk.

Then optimal policy is exactly as in proposition 1, modulo changes in A.
• Proof: Follows exactly as in proof of proposition 1.

Interpretation 1: monetary “least-cost avoider principle”

Interpretation 2: “stabilizing the stickiest price”
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Multiple shocks: general case back

Proposition 7: Consider an arbitrary set of productivity shocks to the baseline
model, {A1, ...,AS}.

• Conditional on sectors Ω ⊆ {1, ..., S} adjusting, optimal policy is given by setting
M = M∗

Ω ≡ S−ω
∑i/∈Ω 1

Ai

, where ω ≡ |Ω|.

• The optimal set of sectors that should adjust, Ω∗, is given by comparing welfare
under the various possibilities for Ω, using W∗

Ω defined in the paper.
• Nominal wage targeting is exactly optimal if the set of sectors which should not

adjust are unshocked: Ai = 1 ∀i ̸∈ Ω∗.
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Price adjustment frequency tracks inflation back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation
Menu cost models: frequency of price adjustment ↑ if inflation ↑

Figure: Nakamura et al (2018)
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Price adjustment frequency tracks inflation back

Calvo/TDP models: frequency of price adjustment is exogenous to inflation
Menu cost models: frequency of price adjustment ↑ if inflation ↑

Figure: Cavallo et al (2023)
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Evidence of inaction regions

Figure: Cavallo and Rigobon (2018)
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The welfare loss of inflation targeting back

“Inflation targeting”: P = Pss (while
having correct relative prices)

Proposition 2: Suppose A1 > A.
Then:
• Inflation targeting requires all

sectors adjust their prices
• Welfare loss from inflation targeting

∝ size of menu costs

W∗ − WIT = (S − 1)ψ

What are menu costs?

• Physical adjustment costs.
Baseline interpretation.

• Information costs. Fixed costs of
information acquisition /
processing.

∗ Results unchanged

• Behavioral costs. Consumer
distaste for price changes.

∗ Results unchanged
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